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ON THE TWO-MODE LASER MASTER EQUATION
Fam Le Kien, A.S.Shumovsky

We use the two-mode laser master equation previously derived by us
to investigate the photon dynamics and statistics of the laser. Closed sets
of equations for the mean photon numbers and a Fokker-Plank-type
equation for the mode-intensity distribution function are obtained.
Approximate solutions of the steady-state master equation are examined.

The investigation has been performed at the Laboratory of Theo-
retical Physics, JINR.

O KHHeTHYeCKOM ypaBHEHHH A IBYXMOLOBOIO Jna3epa
®am Jle Kuen, A.C.NllymMoBcKkmit

HccnenoBank! uHaMuka M CTAaTHCTHKA (GOTOHOB B [IBYXMOZOBOM
Jla3epe Ha OCHOBE paHee NOJYYEHHOTO KHHETHUECKOTO YpPaBHEHHMA.
HocTpoens! 3aMKHyThle CHCTEMBI ypaBHEHMit myif CPEIHHX uMCeN
¢oroHoB M yparHenwe Tuna Qoxkepa — ILtaHka mia dbyrximn pac-
TpeNieNieHusl HHTEHCHBHOCTel Mo, ITomyyeHb! npHG/IKeHHEIe pelleHHs
ANA PaBHOBECHOTO CNyvasi M HEKOTOpbIE Mpe[CKa3aHHMA O CTATH-
CTHYECKHX CBOHCTBaX HOTOHOR.

PaGora Bbmormena B JIaGopaTopun TeopeTHuecKoi ¢u3uxn OUAN.

In the recent paper/ 1/) to be referred hereafter as I we deri-
ved the master equation for the photon distribution in a two-mode
multiphoton laser. This equation was obtained from the exactly solu-
ble model of a three-level plus two-mode system with multiphoton
transitions” 2/ , using the Scully procedures/ 3/ and the one-atom
approximation” ¢/, In general, we have proposed in I that pumping
occurs for all three levels of the system.

In this paper we explore the above-mentioned equation in some
particular cases and limits. We use the same symbols as in I, and there-
fore we do not repeat the two-mode multiphoton laser model. This
model is described in detailin I .

At the beginning of our analysis we assume for simplicity that
all atoms of the laser active medium are pumped only to the upper
level 3. Then, the master equation obtained in I reads
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Here p(nl.nz) is the distribution function of photons in the modes,
A,’s and B o8 are gain and nonlinear coefficients, respectively, Cq's are
loss parameters. The numbers m; are the multiples of the transitions
3+ a sharing the common upper level 3. The functions G,(n, ) are
n !
G, (m,) = 2 Y a =1,2, (2)
(n a= M, )!

First of all we derive from eq.(1) the equations for the mean

numbers of photons in the modes

<Ny > = Enap(nl,nz), a=1,2, (3)
They are

d<n > Ay Gy (0, + m,)

__(.i..ta....:gmaz ~——Can‘z p(nl,nz). (4)
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If the quantum correlations are small:
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k ¢ L . k [ 5
<mymg > T <n >t <, >, (5)

equations (4) reduce to the following closed set of equations for the
mean photon numbers:
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In order to describe the macroscopic behaviour of the laser we assu-
me that <n,> >> m_ In this case equations (6) can be simplified as

d<n, > A, <n, >
- - =m - ~ -G, <n, >. (7)
' 1+ Bl-<n > ! 82 ?
—=<n, + =-<ny>
Ay Ay

If we assume (B, /A,)<n, ‘>mal <<1 we can get from eq. (7)

T =m|A <n, > "'B1<"1> -»Al—A-g<n1> <ng > —Cl<n1>,
d<ng> A 2 2mgy B, my Do ®)
T = My Ay<ny> - B, <ng > --A2I:<n1> <ng> -Cz<n2>.

These equations have been obtained by expandingmthe denominator
in eq. (7) and taking the terms up to (B,/A,)<n, > *. They describe
light amplification in a three-level medium with multiphoton tran-
sitions provided that correlations are neglected and the saturation
effect does not begin to act , i.e.

1/
m, << <n (t)> << (Aa/Ba) . 9)

In the case my=m,=1, A=A, and B;= B, eqgs. (8) are in strict
agreement with the results of 56/, We now examine the steady-sta-
te photon statistics. For simplicity we consider the case of one-pho-
ton transitions m;=my=1. In the steady state the photon distribu-
tion function p(n,,ny,) is independent of time. The corresponding
equation for this function is found from eq. (1) to be
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It is difficult to obtain the exact and explicit expression of the stea-
dy-state photon distribution from eq. (10). However, in the particu-
lar case of equal coupling parameters, i.e., when A;=A,=A, B, =
=B,= B eq. (10) reduces to that derived by Singh and Zubairy in/8/,
The steady-state photon distribution in this case has been found to
be

2 n 2 n
-1 A 1 A 2 A
p(n,,n,) =Z ¥ ) |« ) /I (— n n 2). 11
1 Ve BC,  BC, g Tttt ?) @b

Here Z is the normalization constant. The dependence of the gamma
function in the denominator of (11) on (n;+ n,) is an evidence of
the mode competition.

We proceed to approximating the solution of eq. (10) in some
limit cases.

Let the terms (B,/A;)n,, (B,/A,)(n,+ 1) in the denomina-
tors in eq. (10) be negligibly small compared with unity. Then, we
can easily get the approximate solution
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which is a product of two Bose-Einstein distributions. The condition

for validity of (12) is

Ca - A 2
B

a.

A < c ,

a. a

> 1. (13)

Thus, when the laser action in each mode is much.below threshold, the
modes are statistically independent and chaotic. No mode competi-
tion is seen in this case.

We consider another case. Let us assume that p(n,, n, ) peaks
at (i, iy ) which are such that the terms 1 +(Bg/Ag)ng , 1+ (By/Ag)x
x(ng + 1) in the denominators in (10) can be neglected. Then, eq. (10)
can be simplified to read

2 2
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B, By
AA, (14)
+ G (n,+ Dp(n+1, n,) + — n,p(ny, ny—-1) ~Cynyop(ny, ny) -
171

AA,
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The solution of eq. (14) is easily found to be

. ' n
-1 2 A,/C 2
Pny, my) = Z [(A;/B,C) /a1 (222 ) | (15)
A, /C,

The conditions for validity of (15) are

A/C >,

(A,/Cy ~ A,/Cy) A/C > B, /Cy .- (16)
Three conclusions, as seen from (15), can be made, if the parameters

of the laser satisfy the conditions (16). The first conclusion is that
the two modes tend to become statistically independent in spite of
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the occurrence of mode competition in the laser action. The second
oonclusion is that the distribution of photons in mode 1 is poissoni-
an and independent of the action of the laser in mode 2. The last con-
clusion is that the distribution of photons in mode 2 is chaotic and
strongly effected by mode 1 even at gain that is much above threshold.
This fact is clearly a result of mode competition.

From (15) the mean numbers of photons in the modes are found
to be

A
<n > = A3/B,C,, <n,> = 2/ amn
A;/Cy - A, /Cy

According to I, the gain parameters A ;,A, and the nonlinear parame-
ters B, , B, are given by

A, = 2R(g,/y)%, Bg=8R(g,/y)*, a =1,2. (18)

Here R is the pump rate, y is the decay constant and 8q(a =1,2) are
the atom-mode coupling parameters. From egs. (17) and (18) we can
see that if the pump rate is increased, the steady-state mean photon
number of the mode 1 grows whereas the one of the modes 2 remains
unchanged. We also note the interesting fact that if ;> g5, the con-
ditions (16) for validity of eq. (15) can be satisfied so that <ny% <<np>
This means that in the laser with unequal coupling parameters the
pump rate and the loss parameters can be chosen so that the steady
state photon statistics of the mode with the larger mean photon num-
ber is chaotic whereas' that of the mode with the smaller mean
photon number is coherent.

Finally, in order to compare with earlier treatments, we convert
eq. (10) into an equation which corresponds to the Fokker-Plank equa-
tion for the intensity distribution function. This can be done by using
the representation of

nl n
~Ii-1p I 122 (19)
p(nlo'nz) =J‘P(11112)9 —-—;-—v-;——'——"-———-—-dll dIE’
''n,!

1 2

where I; and I, are the intensities, and P(I;,I,) corresponds to
the intensity distribution function. We can easily find that eq. (10)
is equivalent to the following ’Fokker-Plank-type” equation:

{—:Alallll(l =9y )~ Agdy T = dy ) +
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Here, the auxiliary function W (I, 1) has been introduced by

B . .
P, 1) =11+ —=1,(1 -9, )+§&12(1-~a, YW, Tp). (21)

In the case when A=A, and B, =B, , equations (20) and (21) coin-
cide with those obtained i m 414

Thus, in this paper the two-mode laser master equation previous-
ly derived in I has been used to investigate the photon dynamics and
gtatistics in the laser. The closed sets of equations for the mean pho-
ton numbers, the “Fokker-Plank-type” equation for the mode inten-
sity distribution and a number of predictions about the photon sta-
tistics in the steady-state have been obtained.
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